有名進学塾、予備校カリキュラムに精通し、超難関中学受験、医学部受験、不登校、学力不振等、多様な指導経験15年以上のプロ家庭教師たちが設立したプロ集団です。

法政大学第二高校 過去問対策

法政大学第二高等学校過去問研究

2009年度法政大学第二高等学校の数学入試問題は 例年通り 1.小問集合6問 2・3.平面図形 4.関数のグラフ 5.場合の数 6.空間図形の大問6題構成でした。試験時間は50分で 総解答数が20。煩雑な計算がみられますので、手際よく処理できるよう基本~標準レベルの問題数をこなすようにしましょう。
今回は 2.平面図形を解説します。 

2009年度数学入試問題 平面図形

問題 2

 

                                   

法政大学第二高校2016年度 数学入試問題 3. 場合の数 問題

AD//BCである台形ABCDにおいて、対角線ACとBDの交点をとすると

△OABの面積は2, △ABDの面積は3であるという。

このとき、次の問いに答えなさい。
問1 台形ABCDの面積を求めなさい。
問2 頂点Aを通り、辺DCに平行な直線がBDと交わる点をEとする。△OAEの面積を求めなさい。

(1) 解説解答

問1 台形ABCDの面積を求めなさい。
解説
△OAD=△ABD-△OAB=3-2=1 なので

DO:OB=1:2

△OADと△OCBは ∠AOC=∠COB (対頂角) ∠OAD=∠OCB(錯角)なので
△OAD∽△OCB より AO:OC=1:2

よって  △OAD, △OAB, △ODC, △OCBの面積比は

△OAD:△OAB:△ODC:△OCB=1×1:1×2:1×2:2×2=1:2:2:4

△OADの面積は1なので 台形ABCDの面積は 1+2+2+4=9

答   9



Copyright(c) 2013 Sample Inc. All Rights Reserved. Design by http://f-tpl.com