東京都市大学付属中学帰国生過去問対策
2021年度東京都市大学付属中学校帰国生入学試験は1月6日に実施されました。
帰国生入試方式はA方式国語型・作文型,B方式2教科式・4教科式ででした。
A方式算数受験者平均点52.2点合格者平均点86.4点,B方式受験者受験者平均点合格者平均点74.8点でした。
帰国生算数入試問題は 1.小問集合83問 2.旅人算 3.平面図形 4.水そうに水を入れる割合の問題 5.場合の数が出題されました。
今回は1.小問集合から、受験者平均得点率31%,合格者平均得点率44%の問6 場合の数,受験者平均得点率41%,合格者平均得点率58%の問7
平面図形,受験者平均得点率61%,合格者平均得点率78%の問8 立体図形の切断を解説します。.
東京都市大学附属中学校過去問対策
中学受験指導はスペースONEのプロ家庭教師にお任せください。
東京都市大学付属中学2021年度帰国生算数入試問題1.問6,7,8 問題
東京都市大学付属中学2021年度帰国生算数入試問題1.問6場合の数 解説解答
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
この中から同時に何枚かのカードを取り除いたところ、残ったカードに書かれている数の合計が46になりました。このとき、取りのぞき方は全部で□通りあります。
解説解答
1から10までの数の和は (1 + 10) ×10÷2 = 55
残ったカードに書かれている数の合計が46なので、取り除いたカードの和は 55 - 46 = 9
合計で 9になる数の組み合わせは
カード1枚のとき [9] 1通り
カード2枚のとき ([1][8]),([2] [7]),([3] [6]),([4] [[5]) 4通り
カード3枚のとき ([1] [2] [6]),([1] [3] [5]),([2] [3] [4]) 3通り
以上 1 + 4 + 3 = 8通り
答 8通り
東京都市大学付属中学2021年度帰国生算数入試問題1.問7平面図形解説解答
解説解答
半径6cm 中心角30°の弧の長さ8個分と6cmの直線2個分の合計が求める長さ
答 37.12cm
東京都市大学付属中学2021年度帰国生算数入試問題1.問8立体図形の切断解説解答
解説解答 体積比で求める
3点P,Q,Rを通る平面で切った切り口は下図の通り
それぞれの点をS,T,U,Vとする。
求める立体はPRS-UQVの体積
三角錐T-UQVと三角錐T-RPSの辺の比は 2:6 = 1:3 なので
三角錐T-UQVの高さと三角錐T-RPSの高さの比も ①:③
③ - ① = ② = 6cmなので ③ = 9cm
三角錐T-UQVと三角錐T-RPSの体積比は 1×1×1:3×3×3 = 1:27
したがって 求める体積は
答 52c㎥
解説解答 体積比で求める
3点P,Q,Rを通る平面で切った切り口は下図の通り
それぞれの点をS,T,U,Vとする。
求める立体はPRS-UQVの体積
三角錐T-UQVと三角錐T-RPSの辺の比は 2:6 = 1:3 なので
三角錐T-UQVの高さと三角錐T-RPSの高さの比も ①:③
③ - ① = ② = 6cmなので ③ = 9cm
三角錐T-UQVは底辺2cm高さ3cm,三角錐T-RPSは底辺6cm高さ9cmなので 求める体積は
答 52c㎥